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The stability of cylindrical shells With initial deflection is examined under 
creep with a programmed load. Data arepresented from an experimental study of 
thestability of shells under creep which are compared to the results of a cal- 
culation. 

Most shells used in construction of aircraft operate under creep conditions with vari- 
able loads and heat temperatures. In this work the stability of a cylindrical shell with 
initial deflections and variable axial load at constant temperature is calculated. The 
simplest programs for varying compressive forces are treated (Fig. I). Results are pre- 
sented of an experimental study of the stability of cylindrical shells under creep with a 
programmed load. 

A derivation of the disturbed-motion equations for a shell under creep conditions 
with initial deflection was given in [i] for a constant intensity of ground-state stresses. 
Linearized physical equations were used, and geometric nonlinearity was taken into account. 
The flow equations for a shell will be written in this work in the same form as in [i], 
but with a variable intensity of the ground-state stresses. 

Suppose the creep equation has the form 

#i = g O:q, ~ )  ~i  (1) 

where hi and ~i are the creep and stress flow rates, and let a flow-theory-type equation 

#u = (~I2) g (p~, ~i) %*% Pis = 8is - -  012 G-9 ~ij** (2) 
h o l d  b e t w e e n  t h e  c o m p o n e n t s  o f  t h e  c r e e p  f l o w  r a t e  t e n s o r  P i j  a n d  s t r e s s  d e v i a t o r  z i j  " 

We a s s u m e  t h a t  t h e  s t r e s s e d  s t a t e  o f  t h e  s h e l l  c o n s i s t s  o f  a m o m e n t l e s s  g r o u n d  and  
some d i s t u r b e d  s t a t e  

% (t) % + 8 %  (t), #v  (t) = ~v + @~J (t) (3) 

Redistribution of stresses and displacements occurs during the creep process. We as- 
sume that additions due to disturbances are small and that the linearized equations [2] 

Og ~ Og 

(4) 

are valid for magnitudes characterizing the deviation from the stressed state. 

Integrating Eq. (4) with respect to the variable oi and writing the strain of a 
tapered shell related to the deviation from the ground state, the moments, and additional 
forces in the middle surface, and carrying out the transformations as in [i], we obtain a 
system of equations describing the behavior of shells under creep: 
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u (W, Wo, {l}) -ts e-~le:D~XA (w --u,o)a~ - - C  " f ~ Si--U{w, Wo,+)-- 
0 0 

}{* 

0 

(5) 

The stress, deflection, 
~, w, and wo, while D denotes the cylindrical rigidity of the shell. 
hl, U, and P have the form 

03 02 03 0~ 
A = ~ -t- aye'  A = a n  ~ + 2~12 ~ + ct2~ 0y~ 

(a3 i a ~ )  (a~  i o ~ )  o~ 
A l = ' a l l  Oy 3 2 Oz 3 "-~ ~ Ox 3 2 ~3 - -  8~ Ox O------y 

l 
U (w, wo, ~ )  = - -  DAA (w - -  Wo) - -  ~ (Nll  ~ + (D~) - -  

+ --~/-g~) (w - too) + w~ ~ - -  w~,o~ . w=w~ + w~~ ~ 

E q u a t i o n s  (5)  c o i n c i d e  w i t h  e q u a t i o n s  f r o m  [ 1 ] ,  t h o u g h  t h e  d i m e n s i o n l e s s  p a r a m e t e r  
due to creep flow has the form 

x 

= I (E / ~i) dp~ 
0 

I n  t h e  p a r t i c u l a r  c a s e  when o i  = c o n s t ,  we h a v e  • = ( E / o i ) P i  = ~. 

In the case of axial compression of a cylindrical shell 2h thick, 

o ' n  - -  -- i f ,  0"12 ~ ff~2 ---~ 0 ,  (Yt ~ O', Cr n ~ -- i, ~I~ : O~s~ = 0 

17, = oc, R~ = R ,  N n  = - - 2 ~ h ,  NI~ = N ~  = 0 

For the creep law of Eq. (i) with 

g = A~'~-~ 

the values of ~, b, and S(~) are given by 

a = 0 ,  b = n - - l ,  S (~) ----- (n - -  !)  ~ 

E q u a t i o n s  ( 5 ) ,  a s  a r e s u l t  o f  Eqs .  ( 6 ) - ( 8 ) ,  t a k e  t h e  f o r m  

• ;4, 

AA(I) + e -• f e  ~ (n - -  1)AIAI(D d •  B ~[P (w, w~ __e -• f e a r  (w, Wo) d• : 0  
0 0 

_J 

x* N* 

3,~ . . . . .  I e'~AA (w - -  Wo) d• U(w,  wo, q ) ) : e - ~ S e " D ( A A  + A A ) ( w - - w o ) d •  - - - ( - e  
0 0 

and initial deflection functions are denoted in Eqs. (5) by 
The operators A, A, 

(6) 

(7)  

(8) 

(9) 

The elastic state of a shell with initial deflection wo is described by the nonlinear 
equations 

i 
- -  DAA (w - -  Wo) - -  --F q3= + ffJ~w= + ~=w,1~ - -  2(1)~uw~y ----- 0 

@AAq9 = 1 W (w -- wo)= + w ~  2 -- w = w ~ -  [w~,O3 _ w=%,01 (10) 

B ' = 2 E h  

An approximate solution of Eqs. (i0) if the initial deflection is given in the form 

�9 O ~ x  . m y  W 0 = /10 sin ~ -  Sill T +/20 COS aX ( 1 1 ) 

and if the solutions are found in the form 
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w = / ~  sin az . my T s m  - h -  + A oos ax +/3 (12) 

leads to the equations [3] for the deflection amplitudes ~ = f ~ / 2 h  and ~ = f z / 2 h ,  which 
are the initial conditions for solving the creep problem for shells with initial deflections 
~o, ~ o .  

We find the solutions of Eqs. (9) in the form 
�9 ~ 

2ray 
= ~F 1 (x) C 1 ~,os (1~ -q I- IF 2 (x) C 2 cos T 

�9 ax  . my  . 3=x  . my  

+ ~ (.) C~ sm T sln---~-- + ~'~ (x) G sm T S m ~- 
Integrating with respect to the coordinates x 

we obtain a system of nonlinear integral equations 

al(Pl -}- a2(p2 + a s = O, b,~tpl 

Solving the equations for the linear parts of 
obtain the system 

( 1 3 )  

and y in the sense of Bubnov-Galerkin, 
related to the variable ~, 

"-l ' -bl~--~bs = 0 i (14) 

the deflections : under creep @~ and ~, we 

a253 - -  a s b l  a362 - -  a l b 3  

(~1 ----- a l b l  - -  a:~b~ ' (Dz - ~  a l b l  - -  aebe  

a l  : ~1 [gl - -  (4/3) P - -  (T] / 4) g2~102 q- ( i  / v 2) ~2 ~ 
a~ = [(4~p;~) / @)1 g~ 
az = -- ;10 [gl -- (4 /~2L12 ) ;,o] __ (1 / l) 2 ) gaq)l(p2 ;1;2 -1- (n / 4 )  X _ 

/u2k, "~) [2q)~ ; , -  (1 / 2~1)1 ga + (k, / ,,') g'aq)l;~ - -  [(16kan ) / 
/(8i  .~2~)1 ~ J ~ ,  - (g, / 3) I(%) x/. - -  i l  ] . -  .(n / 3) g j .  

b s = - -  gz / ~2 ~ + (1 / 4vD ~~ --  (g , r  / (4~D + (8ngg• . . . .  
X(P12~2~12~2) D2 - -  (16/9) g8 ( / t l  -~ 3nY~) + (2k s / D2~l 2) X 

x (J33 -- 4~4,) (pl L -- (k, / gs) .g, -- (Suk~ / 8i~'X,D (h ~/~ 
gl = (%) ' ~  + i / ('~'iD, g2 = ,~ + i / ~', g3 = i / 
/~*12 - -  41"1 ~2~ g4 -~- t -~- 8 / ~,1 ~, g~ = J38 - -  4 ~ l l ~ ,  g~ = J ~  - -  
- -  (T l / 4) ]a.-,., g7 = (64 / 9) t ~  -4- t / (U%l), gs = vh l ,  g9 : t ] 
/~2 + t I (817.2D ~ = (l + ~) I t,~, x~ = (t + 9oD I (9oD 

(i5) 
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We introduce in the expressions for ai and b i the notation 

x* 

J~J = e-~P I eU#Hi (• d~ 
0 

H1 = q)2~2 -- ~20' H2 ----- ~12512 -- ~102 

H 3  = ~ i  ~1 - -  ~10' H4  = (~lq)2 ~1 ~2 - -  ~10 ~2 0 
k~ = l ,  k .  = n, k 3 = i  + ( n - - 1 ) ( ~ 2 / 2 - - i ) 2 / ( ~ 2 +  i).2 
k 4 =  ( n +  3 ) / 4 ,  k 5 =  i + ( n - - i ) ( 9 v  ~ / 2 - 1 )  2 / ( 9 v ~ +  i)~ 
v = (aR)  / (2m), ~1 = (S/s) ~*~, P = (3R(~) / (4Eh) 

We differentiate the system (14) with respect 

c3al Oa2 Oa3 Ob2 
" op q)~ + "~-e (P~ + "-~--p = 0 ,  

to p, 

abl , c3b3 = 0  

We compile the determinant of the system, 

M = [(a 1 / ~1 q-  T~) (b I / ~2 + Ts) - -  2 (a2 / ~2 q-  Tx) ~] r 

• gsks - -  (8~lk~ / 8 t v ~  2) JBa 
T~ = - -  ( i  / v =) g4q~2~ @ (3/a)1]g2q)12~l 2 --{- ( i 6  / IJ2)TIq)~2~2Zg9 - -  (k~ / 4) gaJ22 n u (k ,  / v 2) g ,  

T 3 = (8 / v2)T]g9(p12~l 2 

(i6) 

(17) 
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The critical time ~ is found either by setting M equal to zero or by imposing a minimum 
condition on it. 

A calculation was performed for a shell under creep using Eqs. (15) for two cases of 
varying the axial compressive load. Figure 2 depicts the dependence of deflections under 

creep calculated for initial deflection values of ~o = 3~2 ~ = 0.2, and ~o k = 3~i ~ = 0.05. 

In the three-dimensional coordinate system ~i, ~, P (Fig. 2) the curves abcd and abcfg 
correspond to antisymmetric deflections ~i and abce and abchm, to symmetric deflections ~2 
under creep, respectively, for the two values of the parameter ~z characterizing the shell 
delay time under constant load (~z = 0.4, x z = 0.8). The straight line ab corresponds to 
an elastic load of a shell with compressive stresses p = 0.3. The curves bc, bcf and bc, 
bch correspond to a growth in the antisymmetric ~z and symmetric ~ 2 deflections for a con- 
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stant compressive load p = 0.3 and the curves cd, fg, and ce, hm, to a growth in ~i and ~2 
under instantaneous loading of a shell with compressive stresses until stability is lost. 
The results of a calculation of the critical values of load p, for different values of the 
parameter ~I are depicted for program I (Fig. i) in Fig. 3. 

Calculations using Eqs. (15) and (17) were carried out on a computer for initial deflec- 

tion values ~o = 0.2 and ~o k = 0.05. Curve 2 corresponds to the case pl = 0.224 and curve 
3, to the case p: = 0.3. The s&ze of p~ is due to the level of constant stresses at which 
creep strain of shells accumulate (Fig. I). The total critical strain values ~ are deter- 
mined from the equation 

We may note in considering the results of the calculation of the critical strain of 
shells under creep conditions, depicted in Fig. 3 by curves 2 and 3, that a distinct addi- 
tional instantaneous loading is required in order for a shell to collapse as a function 
of the magnitude of the preliminary creep strain. The magnitude of this loading is notice- 
ably decreased only for significant accumulated creep strain. 

We may also note that curve 2 (or 3) corresponding to critical parameters p and e for 
the case of a program with loading (program I, Fig. i) lies above curve I, which corresponds 
to the critical parameters under creep with constant compressive forces. Thus, the critical 
strain is greater for a collapse with a loading (point a) than in a collapse under creep 
conditions with constant load equal in magnitude to the critical compressive load which 
shells collapsing under a load expe~ience (point b). 

Calculations of critical strains were also carried out for load programs of the type of 
program 2 (Fig. i). Results are given below of a calculation of the critical values ~, for 

given compressive loads P2 = 0.244 and Pa = 0.375 and different fixed ~2: 

z2 0.20 0.30 0.37 0.40 0.60 0.70 0.75 0.78 
• 0.47 0.53 0.56 0.59 0.70 0.76 0.80 0.82 

It is of interest to compare the results of the current work with data from an experi- 
mental study of shell stability under creep conditions with programmed load. The calculation 
requires that we specify the values of the initial shell deflections. We used a technique 

proposed in [3, 4] for this purpose. 

A total of four shells machined from DI6T material at T = 250~ (radius R = 88 mm, thick- 
ness 2h = 0.5 mm, and length I = 425 mm) were tested under creep conditions with programmed 
load. The time, load, and approach of the end faces of the shell were measured in the exper- 
iment (to determine the axial creep strain). A variation program for an axial load of type 

I was realized. 

After being heated to a given temperature the shell was loaded to a value p of 0.32 at 
which it was held until a given magnitude of creep strain accumulated and was then rapidly 
loaded with an axial force until it collapsed. The shell lost stability "in crashes" with 
the formation of bands of rhombic depressions along the periphery. The test results are de- 
picted in Fig. 4 by points a, which represent the dependence of total critical strain s on 
axial load p. Test data for the same shells under constant levels of compressive loads are 

depicted in Fig. 4 by points b under creep conditions. 

The initial deflections ~o = 0 and ~o k = 0.68, which were selected from data of an 
elastic experiment according to the technique described in [4], were introduced in calculat- 
ing the critical strains. The critical time and total critical strain under creep for shells 
that have undergone tests were determined using Eqs. (15) and (17). The results of the cal- 
culations are depicted in Fig. 4 by curves 1 and 2. Curve i corresponds to critical strain 
under creep conditions for a constant axial load and curve 2, to critical strains of shells 

under creep that have lost stability With loading. 

The good agreement between the calculated curves and experimental data allows us to 
conclude that it is sufficient to have results from elastic tests in order to calculate the 
stability of shells under creep conditions with an axial load varying according to some pro- 
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gram. These data allow us to select the initial deflections that can then be introduced 
into a calculation Of the stability of a shell under creep with an axial load varying ac- 
cording to a program. 
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